
Material Data Sheet No. 9003 Edition 11/1990

ThyssenKrupp VDM GmbH

Plettenberger Straße 2 58791 Werdohl Postfach 18 20 58778 Werdohl

Telefon: +49 2392 55-0
Telefax: +49 2392 55-2217
E-Mail: vdm@thyssenkrupp.com
www.thyssenkruppvdm.com

Magnifer 75 is a soft-magnetic nickel-iron alloy with about 75% Ni. It has a saturation induction of 0.8 T, extremely high permeability and low coercivity.

Typical applications of Magnifer 75 are:

- Instrument transformers
- Integrating current transformers for current circuit breakers
- Relay parts
- Screens

Magnetic properties

The magnetic properties of Magnifer 75 depend to a great extent on the final heat treatment. After optimum final annealing (details overleaf) an initial permeability μ_4 between 60,000 and 80,000 can be obtained as well as a coercivity of less than 1 A/m. With strip of 0.1 mm thickness typical values for maximum permeability vary between 200,000 and 240,000. Deviations from optimum annealing conditions may lower substantially the obtainable values for permeability and coercivity.

The shape of the hysteresis loop as well as the temperature dependence of permeability can be adjusted by systematic heat treatment. This results in the following special grades of Magnifer 75:

Magnifer 75 R

Grade with a rectangular hysteresis loop.

Magnifer 75 F

Grade with a flat hysteresis loop.

Magnifer 75 TK

Grade with a low temperature coefficient between about – 25 and +80 °C.

Table 1 lists the limiting figures for the individual grades.

Figs. 1 to 10 show the magnetic properties of Magnifer 75 in relation to various parameters, so that the user may deduce the most important data required for dimensioning.

The properties shown in these diagrams are characteristic of the alloy in the heat-treated condition. The various heat treatments are described in the following sections. Variations in these heat treatments will result in changes in the properties of the alloy. The main factors in this respect are annealing temperature and cooling rate.

ThyssenKrupp VDM

ThyssenKrupp

Magnetic properties

Alloy	Grade	Designation acc. to DIN	Thickness (mm)	Permeabi µ4	ity ^{1) *} Pmax	Coercive force ²⁾ H _c (A/m)	Induction (mT) at H _{eff} = 20 mÅ/cm	Core loss (W/kg)
Magnifer® 75	ME 3	E 3 DIN 41301	0.05; 0.10 0.20 0.35	≥30.000 ≥30.000 ≥30.000	≥ 170.000 ≥ 100.000 ≥ 50.000		≥ 400 ≥ 250 ≥ 125	$V_5 = 0.025$
	ME 4	E 4 DIN 41301	0.05; 0.10 0.20 0.35	≥ 40.000 ≥ 40.000 ≥ 40.000	≥ 185.000 ≥ 115.000 ≥ 60.000		≥ 450 ≥ 270 ≥ 150	
	ME 6		0.05; 0.10 0.20	≥60.000 ≥60.000	≥200.000 ≥140.000		≥ 500 ≥ 350	$V_5 = 0.02$
	ME 8		0.05; 0.10	≥80.000	≥220.000		≥530	
	MH 2	RNi 2, RNi 5 DIN 17405	Bulk material			≦2		
Magnifer® 75 R	MER		0.05; 0.10	Rectangular hysteresis loop $B_R/B_m \ge 0.9$ with $H_{max} = 0.1$ A/cm				
Magnifer® 75 F	MEF		0.05; 0.10	Flat hysteresis loop				
Magnifer® 75 TK				Low temp depender of permea	nce			

¹¹ Measured with toroidal tape-wound cores 22 x 14.5 x 10.

Table 1 - Magnetic properties of Magnifer® 75.

Heat treatment

Heavily worked stock should be soft annealed before any further deformation. This annealing operation should be carried out between 800 and 1000 °C. Annealing time should not exceed 1 h and can be shorter at higher temperatures. Temperature and annealing time are guided by the desired final condition. Annealing should be carried out in hydrogen, cracked ammonia or a clean inert gas atmosphere.

Final annealing for optimum magnetic properties

The magnetic properties quoted in this Data Sheet are obtainable only after a special final annealing treatment. Annealing must take place in dry hydrogen or cracked ammonia (dew-point below < - 40 °C). The appropriate annealing temperature for Magnifer 75 is between 1050 and 1200 °C at an annealing time of 2 to 8 h. The cooling process after the final annealing operation is of special importance with high nickel-containing alloys, as the order-

ing processes which take place in the atomic range affect the magnetic properties to a great extent. The composition of the various charges is selected so that furnace-cooling to about 500 °C over 5 to 6 h, followed by cooling in air, usually results in good magnetic properties. However, to obtain optimum properties, final annealing should preferably be carried out in our factory. This applies in particular to the special grades Magnifer 75 R, F and TK.

After the final heat treatment the parts must not be worked any more, as any plastic deformation results in a notable loss in magnetic properties.

²⁾ Static measurement after magnetisation to saturation.

Chemical composition (nominal data)

Ni 75% Cu 5% Cr 2% Mn 0.5% Si 0.2% C 0.02% balance Fe

Standards and material no.

DIN 17745	2.45002.4519	NiFe 16 CuCr	DIN 17405	2.4596	RNi5
DIN 41301	2.4591	E3	DIN 17405	2.4595	RNi2
DIN 41301	2.4592	F4			

Physical properties (nominal data)

Saturation induction	0.8 T	8000 G
Curie temperature	400 °C	820 °F
Saturation magnetostriction	+1 - 10-6	+1 · 10-6
Electrical resistivity	$0.55~\Omega~mm^2/m$	349 ohm circ mil/ft
Specific gravity	8,6 g/cm ³	0.31 lb/in ³
Thermal conductivity	0.34 W/cmK	135 (BTU inch)/(ft h °F)
Mean coefficient of thermal expansion (20-100 °C)	12.5 · 10 ⁻⁶ /K	7.3 · 10 ⁻⁶ /°F

Mechanical properties (nominal data)

		cold rolled (about 50%)	*deep drawable soft annealed	after final anneal	
Tensile strength	N/mm²	860	600	580	
	ksi	122	87	84	
Yield stress	N/mm²	800	290	220	
	ksi	114	41	32	
Elongation	96	5	> 40	> 40	
Hardness	HV5	270 140-180		110-130	
	HRB	78- 90		63-73	
	HRC	26		FD(5) - FD(7)	

^{*}The required condition, deep drawable or soft annealed, should be stated when ordering.

Fabrication

Working

All conventional processes can be used. Fabrication data may be taken from the table of mechanical properties. In the "deep drawable" condition the minimum Erichsen depth is 8 for sheets of 1 mm thickness. The magnetic, final annealed condition is only the final condition in the fabrication of certain parts. It is not suitable as the initial condition for any working operation, as the magnetic properties would be drastically lowered. The hard-rolled state is the most suitable for stamping.

Machining

The cold worked condition is best suited for machining operations. Alloy properties are similar to those of stainless steels. Low cutting speeds, cooling, cutting oils, hardmetal or high-speed steel tools are necessary. The latter must be kept sharp. After machining is completed, residual oil, grease or dirt films must be entirely removed before annealing the parts.

Welding

The best process is usually resistance spot welding, although in principle other welding processes are also applicable. We are pleased to advise on the best process in special cases.

Corrosion resistance

The corrosion resistance in humid atmospheres is good, but not so in aggressive media.

Forms supplied

Semis

Strip, ribbon, sheet, bar and wire are available. Sizes and tolerances are quoted in special data sheets called "Forms supplied, sizes and tolerances".

Fabricated parts

Toroidal tape-wound cores up to 750 mm O.D., core sheets, relay parts and screens.

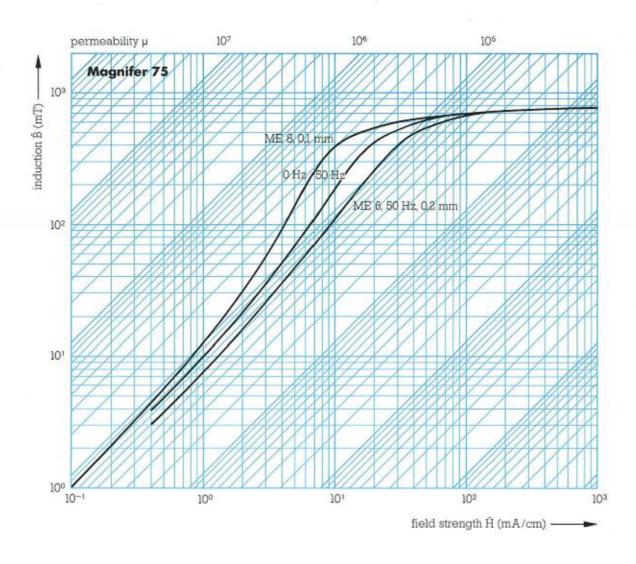


Fig. 1 - Typical induction/field-strength curves of Magnifer® 75, measured on toroidal tape-wound cores of 0.1 and 0.2 mm strip thickness.

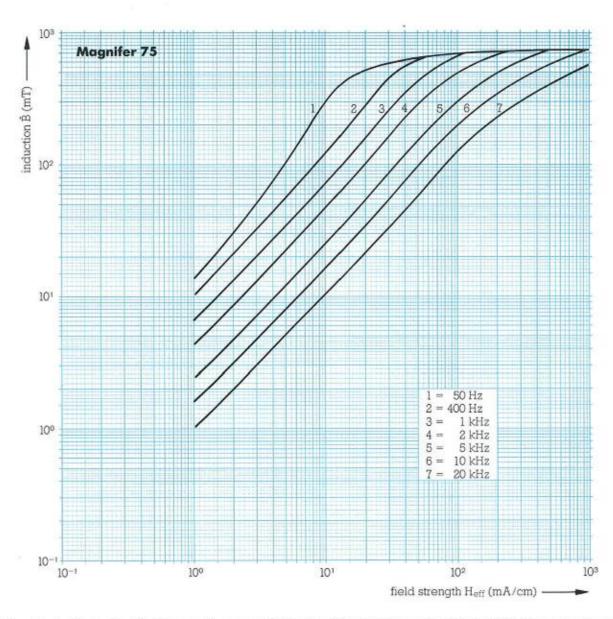


Fig. 2 - Typical induction/field-strength curves of Magnifer® 75 ME 8, measured on toroidal tape-wound cores of 0.1 mm strip thickness at various frequencies.

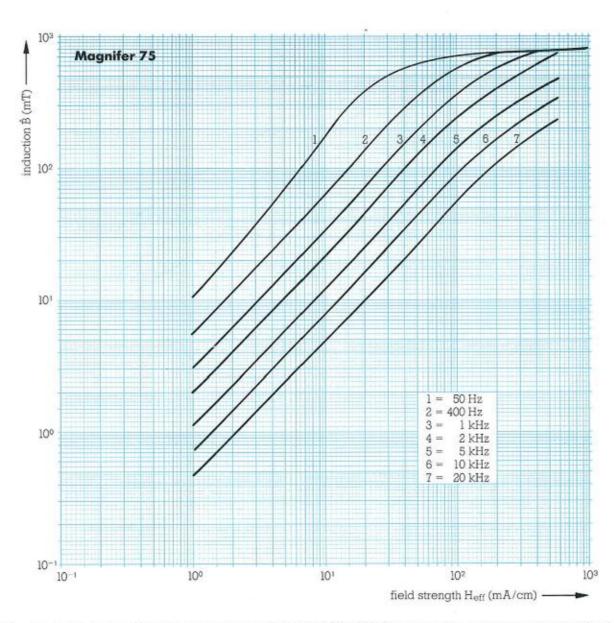
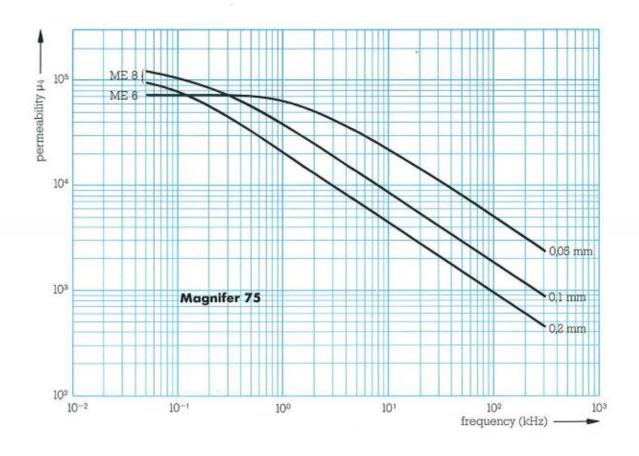
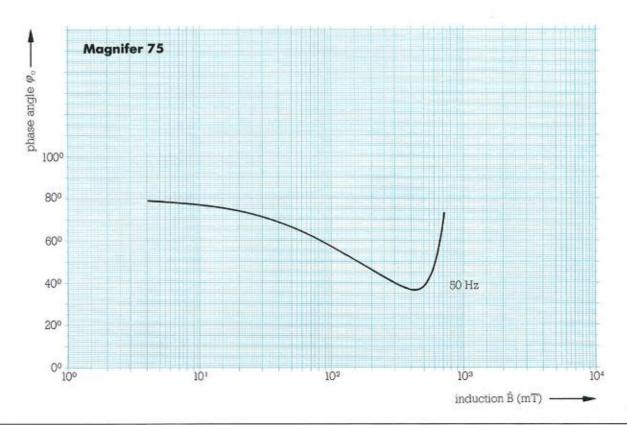




Fig. 3 - Typical induction/field-strength curves of Magnifer® 75 ME 6, measured on toroidal tape-wound cores of 0.2 mm strip thickness at various frequencies.

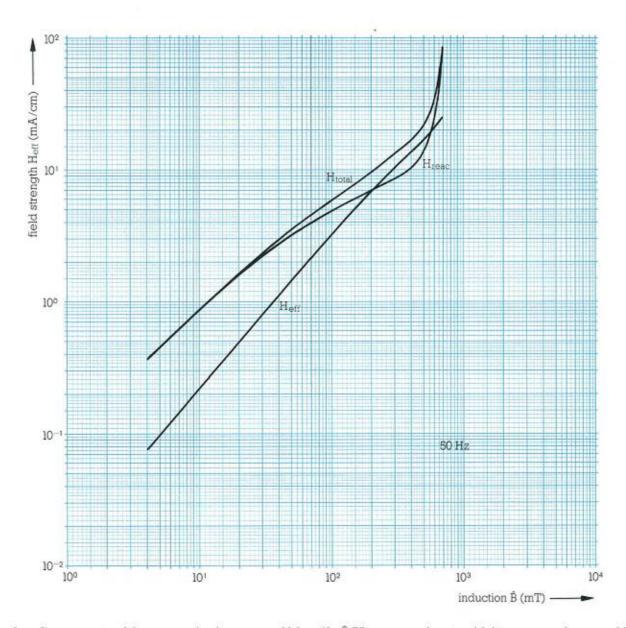


Fig. 6 - Components of the magnetization curve of Magnifer® 75, measured on toroidal tape-wound cores of 0.2 mm strip thickness.

Fig. 4 - Frequency dependence of the initial permeability of Magnifer® 75, measured on toroidal tape-wound cores of various strip thicknesses.

Fig. 5 - Phase angle φ_0 of Magnifer® 75, measured on toroidal tape-wound cores of 0.2 mm strip thickness.

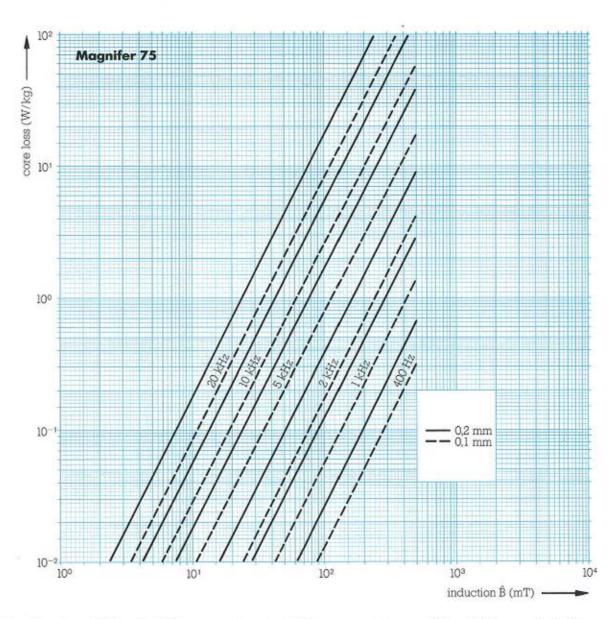


Fig. 7 - Core loss of Magnifer® 75, measured on toroidal tape-wound cores of 0.1 and 0.2 mm strip thickness at various frequencies.

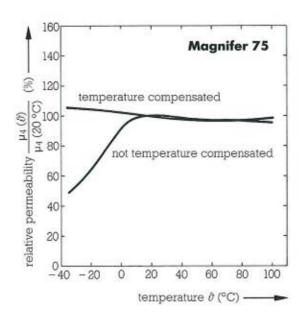
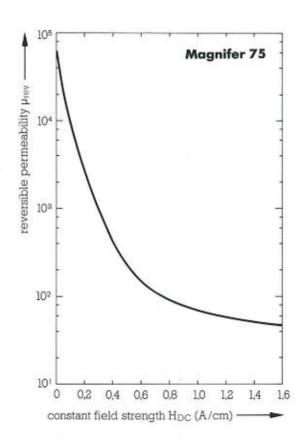



Fig. 8 – Temperature dependence of the initial permeability of Magnifer® 75.

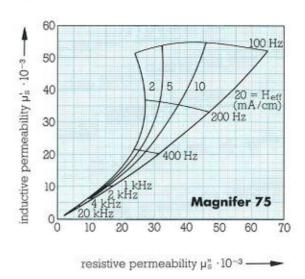


Fig. 9 – Locus curves of complex permeability of Magnifer® 75, measured on toroidal tape-wound cores of 0.2 mm strip thickness.

Fig. 10 - Reversible permeability of Magnifer® 75, measured on toroidal tape-wound cores 50 x 40 mm of 0.2 mm strip thickness at 100 Hz.

We reserve the right to make alterations, especially where necessitated by technical developments or changes in availability.

The information contained in this data sheet, which in any case provides no guarantee of particular characteristics, has been compiled to the best of our knowledge but is given without any obligation on our part.

Our liability is determined solely by the individual contract terms, in particular by our general conditions of sale.

This issue supersedes Data Sheet no. 9003, edition 5/1983.

Edition 11/1990. Please ask for the latest edition of this Data Sheet.

ThyssenKrupp VDM GmbH Plettenberger Straße 2 58791 Werdohl Postfach 1820 58778 Werdohl Telefon: +49 2392 55-0

Telefax: +49 2392 55-2217 E-Mail: vdm@thyssenkrupp.com www.thyssenkruppvdm.com